

Data Management and Transport

Arie Shoshani

Scientific Data Management Group Lawrence Berkeley National Laboratory

National Collaboratory Program Meeting, August, 2004

Grid Data Management Basics

Data

- data items organized in containers
- e.g. Files, Blobs
- Data-objects: are referenced by container names

Data Management =

- Storage management +
- Data-object management

Data transport =

- Space management +
- Data-object movement

Grid = Distributed Computing?

- Isn't it just "distributed computing"? Yes, but ...
- The Grid is a common infrastructure of services that enable distributed computing
- Suppose you want to run a large compute/data-intensive job (need to use community resources)
 - Need to get compute resource
 - Need to get storage resources
 - Need to co-locate data objects and compute modules
 - Need to schedule job
 - May need to set up parallel sub-jobs, maybe to set up data streaming => workflow support
 - Need to run workflow (job)
 - Need to move resulting data objects to other storage resources (e.g. an archive or user site)
 - Need to monitor errors and failures
 - Need to recover from transient errors
 - Need to enforce security
- Need a single infrastructure and an architecture for the services

Grid Architecture

COLLECTIVE

/E 1: COLLECTIVE 2:
SERVICES
FOR SPECIFIC TO
APPLICATION
DE DOMAIN OR
SES VIRTUAL ORG.

Request Interpretation and Planning Services Workflow or Request Management Services

Application-Specific Data Discovery Services Community Authorization Services Consistency Services (e.g., Update Subscription, Versioning, Master Copies)

COLLECTIVE 1: GENERAL SERVICES FOR COORDINATING MULTIPLE RESOURCES

Data Transport Services Data Federation Services Data Filtering or Transformation Services General Data Discovery Services Storage Management (Brokering) Compute Scheduling (Brokering) Monitoring/ Auditing Services

RESOURCE:

File Transfer Service (GridFTP) Storage Resource Manager Data Filtering or Transformation Services Database Management Services Compute Resource Management Resource Monitoring/ Auditing

CONNECTIVITY

Communication Protocols (e.g., TCP/IP stack)

Authentication and Authorization Protocols (e.g., GSI)

FABRIC

Networks

Mass Storage System (HPSS) Other Storage systems

Compute Systems

This figure based on the Grid Architecture paper by Globus Team

Grid - The Vision

The DataMover is a Brokering Service That Invokes SRMs and Transfer Services

DataMover: SRMs used in ESG for Robust Muti-file replication

Uniformity of Interface → Compatibility of SRMs

What did we learn?

Standardization and Composition of Services Works!

- The Grid is <u>NOT</u> about standardizing middleware software
- It is about a framework for standard <u>functional specifications of services</u> that inter-operate
- The framework of a <u>layered architecture</u> works: services can be composed from other peer or lower level services
- Want <u>multiple</u> Grid services providers that target common functional interfaces

Analogy

- Structured Query Language (SQL) for relational database systems
- Multiple implementations, some commercial, some open source
- Compete based on features, robustness, recovery, ...

Cost

- Getting technology to production is expensive often not directly funded
- Important to do, that's how to measure success
- Need to support explicitly activity of adapting technology (Bridge the gap between users to technologist)

Data Management and the Grid: Heaven or Hell? (or what's still missing)

- Potentially heaven, but ... still need to go through hell to get there
- What's hellish? data management perspective
- Space management issues
 - Large-scale robust data transport coupled with space management
 - The space reservation dilemma incremental allocation?
 - Co-scheduling of compute and storage resources
 - Identify bottlenecks, automatic replication
 - Automated space management and garbage collection
 - Space and data objects lifetime mechanisms
 - Ensure that important data-objects are not lost

National Collaboratory 2004

Data Management and the Grid: Heaven or Hell? (or what's still missing)

- What's hellish? data management perspective
- Allocation and authorization issues
 - Space management and allocation
 - Managed by virtual organizations
 - Allocating quotas, enforcing and reporting resource usage
 - Authorization management and enforcement
 - Data-objects authorization
 - Centralized? How to coordinate authorization updates?
- Performance prediction
 - It's not only the space availability and the network speed
 - It's also the I/O allocation at the storage system
 - And also estimating access from MSS (it is on tape/disk?)

National Collaboratory 2004

General "hell" that affects data management too

- Distributed system error detection and recovery
 - Tracking intra and inter component failures
- Running very long jobs (transactions)
 - Tracking status
 - Suspend/resume operations
- Security
 - Many models: GSI, Kerboros, SSL, one-time-password
 - Firewalls
- Adapting to changing technology
 - Things break as new versions introduced

Summary – State of Grid Data Management

- Good reasons to be optimistic
 - Lots of example success stories even production deployment
- For successful collaboratories we need to:
 - Standardize on functional specification of services
 - Allow multiple implementations can't dictate software uniformity
 - Develop robust interoperating products need coordinated infrastructure for testing and distribution
- Need future development in areas of:
 - Dynamic storage management
 - Dynamic data object management
 - Storage resource allocation and authorization enforcement
 - Data object authorization enforcement
 - Failure tracking and reporting
 - Performance estimation

National Collaboratory 2004